Service Details

blog details

Concrete superstructures

The selection of structural systems is key to non-domestic developments from an architectural, stability and cost perspective, but is also influential on the embodied carbon side.

The structure constitutes the backbone of the building and is the longest serving set of elements. Given all of the above, getting it right in all aspects is essential. The focus of this article is on the carbon emissions front, looking at the impact of different structural systems on whole-life carbon

. A range of typical structural forms featuring the three main structural constituent materials – concrete, steel and timber – have been comparatively examined in terms of embodied carbon and cost. Beyond that, the substantial role of careful design and material specification in the overall carbon emissions as well as end of life (EoL) scenarios and the concepts of future-proofing, designing for re-use and the recyclability of structural components have been explored.